1.1 Points, Lines and Planes

Vocabulary

moletin

- **Point** is a 1000+100 in space. A **point** has ______ dimension. A **point** is named by a single capital letter. Example:
- Line consists of an \underline{MGMH} number of points which extends in $\underline{+NO}$ directions. A line has $0 \gamma c$ dimension. A line can be names by a single lower case letter OR by any two points on the line. Example:

Plane consists of an <u>Infinite</u> number of points which form a flat surface (that looks like a wall or floor) that extends in all directions. A plane has $\pm \infty 0$ dimensions. A plane may be named using a single capital letter OR by using three noncollinear points. Example:

$$\pm WO$$
 points on a line called \underline{C}

ndpointS and all Line segment consists of the points on the line between them. Example:

47 or 74

•J •P

Ray consists of One point on a line (called the *initial point*) and all the points on the line that extend in one direction. Example:

- B WBor BW
- on the same line. Example:

point	line	Plane	Solid
Zero dimensions	One dimension	Two dimensions	Three dimensions
·			

• Collinear points - DDINTS - That lie DN the same Example: Line L, M+N

Example: $E^{\bullet} = E^{\bullet} = E^$

Two or more geometric figures <u>INTERSEC</u> if they have one or more points in common. The <u>INTERSECTION</u> of the figures is the set of points the figures have in common.

•

The <u>Intersector</u> of two different planes is a <u><u></u><u></u>.</u>

Classify and name each of the following objects.

Use the diagram to name the figures.

Answer the following about the picture.

Pair-Share:

Use the figure for Exercises 1–7.	
1. Name a plane. <u>CDE</u>	/ . /
2. Name a segmentBD	Å.
3. Name a line. CE	/ × /
Name three collinear points.	Ē
C, B, E	
5. Name three noncollinear points.	D
C, D, E	
6. Name the intersection of a line and a segment r	not on the line
7. Name a pair of opposite rays	and BE
Use the figure for Exercises 8–11.	
8. Name the points that determine plane 12	m t
	(R)
9. Name the point at which line <i>m</i> intersects	Xz
plane R. Z	
10. Name two lines in plane $\mathcal R$ that intersect line <i>m</i> .	

The stand the standard term is a standard term in the standard term is a standard term is a standard term in the standard term is a standard term is

